Donate

About

New Harvest is a registered 501(c)(3) public charity in the United States.

Established in 2004, New Harvest is the non-profit research institute building and establishing the field of cellular agriculture.

 

We strategically fund and conduct open, public, collaborative research that reinvents the way we make animal products - without animals.

Mission & Vision

Our mission is to build and establish the field of cellular agriculture.

Our vision is a strong foundation of accessible, public, fundamental cellular agriculture research, upon which we can build a post-animal bioeconomy, where we harvest animal products from cell cultures, not animals, to feed a growing global population sustainably and affordably.

egg production
New Harvest is advancing the science behind producing animal products without animals. For example, egg white proteins made by bioreactors instead of laying hens in battery cages.

It is time to re-think the supply chain of animal products.

By applying advances in tissue engineering and synthetic biology to growing food, we can revolutionize the supply chain of animal products to continue to provide affordable and sustainable food to a growing population. We call this "cellular agriculture."

medical science and food science
Cellular agriculture is an emerging field of research that lies at the intersection of medical science and food science. There is expertise in tissue engineering and cell culture in medical science, while the application of this work is in food science. Unfortunately, neither of these fields have taken ownership of cellular agriculture, which is why New Harvest is the sole group advancing this work.

Thanks to cellular agriculture, we can produce eggs, milk, meat, and more without intensive crop and animal farming. Unfortunately, this nascent field is not well supported by existing research funding mechanisms.

This is where New Harvest comes in.

Our goal is to plant the seeds of this crucial new field of research.

What We Do

We are spearheading the next agricultural revolution: Cellular Agriculture.

Cellular agriculture allows us to make milk, eggs, meat, leather, fur, rhino horn, and any other animal products from cell cultures rather than from animals.  

Cellular agriculture is a groundbreaking field that is still not adequately supported by established funding channels.

This is where New Harvest comes in: 

WE FUND AND CONDUCT

critical open, public, collaborative research that effectively advances discoveries in cellular agriculture but is lacking support from conventional funding channels in industry or academia.

WE BRING TOGETHER THE COMMUNITY

that is building this field (scientists, academia, funders, industry, policy-makers, regulatory authorities, etc.), fostering collaboration and a divide-and-conquer attitude. 

WE EDUCATE AND INFORM

stakeholders and the public at large of what cellular agriculture research is and why we need to do it.



Cellular Agriculture

Cellular agriculture is the production of agricultural products from cell cultures.

There are two kinds of agricultural products: acellular products and cellular products. Acellular products are made of organic molecules like proteins and fats and contain no cellular or living material. Cellular products are made of living or once-living cells.

Acellular productscellular products
Agricultural products can be classified as acellular (without cells) or cellular (containing cells).

Products harvested from cell cultures are exactly the same as those harvested from an animal or a plant; the only difference is how they are made.

 

How to make acellular products with cellular agriculture

Acellular animal products are made without animals by using a microbe like yeast or bacteria. 

DIAGRAM OF STARTER CULTURE PROCESS
To create a starter culture that can make animal proteins: look up the gene for the protein online and insert the protein gene into a microbe. The microbe will now be able to make the proteins you were looking for. You will only have to create this starter culture once.

In the example of milk made in yeast, the yeast were altered by inserting in them the gene carrying the blueprints for casein, a milk protein. Since all cells read the same genetic code, the yeast, now carrying so-called recombinant DNA, makes casein identical to the casein cows make. 

DIAGRAM OF MILK MADE IN CULTURE
Milk is usually made by mother cows kept in a lactating state in an industrial setting. Instead, we can make the exact same milk by brewing it, using a culture that consumes simple sugars to make milk proteins.

We have made acellular animal products in cell cultures before.

Animal insulin could be considered the first cellular agriculture product. In 1922, Frederick Banting, Charles Best, and James Collip treated the first diabetic patient with an insulin injection. Insulin was originally collected from the ground-up pancreases of pigs or cattle. In 1978, Arthur Riggs, Keiichi Itakura, and Herbert Boyer inserted the gene carrying the blueprints for human insulin into a bacteria, so the bacteria could make insulin identical to the insulin that humans make. Today, the vast majority of insulin is made by this engineered yeast or bacteria. This has made the insulin supply safer, more consistent, and identical to the insulin humans produce.

DIAGRAM OF INSULIN PRODUCTION
For the first 60 years of its use as a treatment for patients with diabetes, animal insulin was collected from the ground up pancreases of pigs and cattle. Today, it is made by microbes who produce the human form of insulin.

We make a food animal product without animals already, too. Rennet is a mixture of enzymes that turns milk into curds and whey in cheesemaking.  Traditionally, rennet is extracted from the inner lining of the fourth stomach of calves. On March 24, 1990, the FDA approved a bacteria that had been genetically engineered to produce rennet, making it the first genetically engineered product for food.  Today, the majority of cheesemaking uses rennet enzymes from genetically engineered bacteria, fungi, or yeasts.  Rennet harvested from cell cultures is purer, more consistent, and less expensive than animal-derived rennet.

DIAGRAM OF RENNET PRODUCTION
Rennet originally was collected from the fourth stomach of young calves. Today, it is made by microbes who produce rennet enzymes.

These examples go beyond animal products.

A Swiss company called Evolva is making vanillin (the primary component of vanilla flavor) from yeast. The vast majority of vanillin is produced from petrochemicals or chemically derived from lignin (a constituent of most plant cell walls). The small percentage of vanillin from vanilla beans is harvested in tropical forests from the vanilla orchid. A cultured vanillin would avoid rainforest farming and chemical synthesis of vanilla.

Ginkgo Bioworks, a company based in Boston, is using cellular agriculture to produce flower fragrances from engineered microbes rather than from flowers.

 

How to make cellular products with cellular agriculture

Most cellular products exist in tissues. Tissues are made outside the body in a process called tissue engineering.  Cells from a particular are assembled on a scaffold (to grow on) with serum (food for the cells to feed on while they grow) in an environment that promotes growth.

Today, tissue engineering is a relatively new scientific pursuit, with a focus on clinical applications such as growing skin for burn victims, or organs for patients requiring organ transplantation. The focus is on the tissue having a biological function -- in other words, the tissue engineered organ needs to be able to work in a living person.

DIAGRAM OF HUMAN TISSUE ENGINEERING
A major goal in tissue engineering today is to grow functional organs for patients. A biopsy is taken from the patient, and the organ is grown with the patient's cells on a suitable scaffold. The goal is an organ that can be transplanted into the patient without being rejected.

While the science behind growing tissue for an organ transplant is similar to growing muscle tissue for food, both come with a set of very different considerations. For example, tissues for meat or leather do not need to work as an organ in someone’s body. Instead, meat needs to have a particular nutritional value, mouthfeel, or taste. Leather needs to have a certain strength, texture, or softness. All cellular agriculture products need to be made affordably -- that means producing tissues at a scale much larger than what is required for patients requiring organ transplants.

DIAGRAM OF CULTURING A STEAK
The technology behind growing organs for human patients is quite similar to that used to grow a steak. The main difference is that the steak doesn't need to "work" inside a body, and instead has to be tasty, with a good mouthfeel and adequate nutritional value.

In our bodies, blood vessels bring nutrients and remove waste products from our tissues. This allows the tissues in our bodies to be quite thick. But if you do not have vessels, the cells do not have access to what they need to grow. In culture, tissues can only grow about 0.5mm thick without vessels. For growing organs for medical purposes, this is a problem. But for growing cultured meat, it may not be.

DIAGRAM OF CULTURING A BURGER
Because cells can only grow about 0.5mm thick in culture, it is easier to grow ground meat than something thick like a steak. Muscle cells could be grown on beads, which offer a lot of surface area, in a bioreactor, and when the muscle cells are removed, it will already have the consistency of hamburger.

The benefits of cellular agriculture 

Compared to their conventional counterparts, cellular agriculture products have fewer environmental impacts, a safer, purer product, and a more consistent supply. This is because the product is being produced in safe, sterile, controlled conditions.

Another exciting aspect of cellular agriculture is the ability to design and tune what you are making. For instance, you could make meat with fewer saturated fats and more unsaturated fats, or you could make leather of different thicknesses. You could make milk without lactose, or eggs without cholesterol.

Despite the benefits and opportunities presented by cellular agriculture, it remains an underfunded area of research.

Have more questions about cellular agriculture? Ask us!

The Status Quo

The way we mass-produce animal products today is a serious threat to the environment, public health, and animals.

Environmental Impact

  • 18% of global anthropogenic greenhouse gas emissions come from livestock farming. By contrast, global transportation accounts for 13%.1
  • 26% Earth‚Äôs ice-free surface is used for livestock farming. This represents 70% of all agricultural land.2
  • 27-29% of humanity‚Äôs freshwater footprint is used for the production of animal products.3
  • Livestock farming is a top contributor to deforestation, land degradation, water pollution and desertification.4

Public Health Impact

  • Viral Outbreaks: Epidemic viruses arise from the crowded conditions of livestock farming. Swine and avian flu, which affected people all over the world, originated from livestock farming.
  • Antibiotic Resistance: About 80% of all antibiotics are given to livestock. These are the same antibiotics used by humans, and is therefore the largest contributor to antibiotic resistance.
  • Food Contamination: Virtually all bacterial-contamination-caused foodborne illness arises from livestock farming. Foodborne bacteria like¬†Salmonella spp.¬†and¬†E.coli¬†come from animal waste and can contaminate animal products as well as fruits and vegetables.

Further, by their very nature as living, sentient beings, animals pose potentially costly risks all along the livestock product supply chain.  

  • An Insecure Supply: Disease can spread very quickly among crowded animals, leading to drastic losses for farmers. For example, in May 2015, as a result of an avian flu in the Midwest United States, 48 million chickens were culled, costing the American taxpayer almost $1bn, sending the price of eggs up by 84.5% between May and June 2015.5
  • An Inconsistent Supply: Animal products must be constantly quality controlled, as the product is affected by the environment, diet and health of the animals. There is a huge amount of variation in animal products, despite major efforts to maintain consistency.
  • An Unsafe Supply: Animal products are¬†regularly recalled¬†due to, among other things, contamination from foodborne-illness causing bacteria. Food-borne illnesses are estimated to cost about $152 bn a year in the United States.6

The Impact on Animals

In 2007, the FAO estimated that more than 56 billion land animals were raised and slaughtered for food. A large proportion of these animals are raised in very poor welfare conditions in factory farms. Some of the practices that farmed animals endure include:

  • Intense confinement
  • Castration without painkillers
  • Illness without veterinary care or euthanasia
  • Trampling and suffocation from overcrowding
  • Being transported long distances, live
  • Being dragged or prodded to slaughter
  • Imperfect slaughter procedures

The FAO anticipates global demand for animal products to increase by 70% in 2050, to feed 9.6 billion people. The further mass production of animals will only lead to more animal welfare challenges.

Considering the impacts, threats, and challenges of livestock farming, it is extremely important that we explore different ways to feed our growing global population.

Cellular agriculture could be how we safely and sustainably feed our growing global population.

Notes

  1. Steinfeld, Henning (2006) Livestock's long shadow: environmental issues and options. Rome: Food and Agriculture Organization of the United Nations.
  2. Ibid FAO (2006) and in FAO 2012 Report Livestock and Landscapes
  3. Hoekstra, Arjen Y. (2012) The hidden water resource use behind meat and dairy, Twente Water Centre, University of Twente, PO Box 217, 7522AE Enschede, the Netherlands
  4. Koneswaran, Gowri et al. (2008) ¬†Global Farm Animal Production and Global Warming: Impacting and Mitigating Climate Change.¬†¬†Environmental Health Perspectives. 116.5 (2008): 578‚Äď582.¬†PMC. (retrieved 28 Apr. 2015)
  5. US Department of Labor statistics
  6. Hoffmann, Sandra et al. (2012)¬†Annual Cost of Illness and Quality-Adjusted Life Year Losses in the United States Due to 14 Foodborne Pathogens,¬†Journal of Food Protection¬ģ, Number 7, July 2012, pp. 1184-1358, pp. 1292-1302(11)

History

New Harvest was founded in 2004 by Jason Matheny, who now sits on our Board of Directors. Jason became interested in cultured meat after researching infectious diseases in India for a Master’s degree in public health. After touring a poultry farm outside Delhi, he recognized the need for a new way to meet a global demand for meat.

When Jason returned to the States, he read about a NASA-funded project that ‚Äúgrew‚ÄĚ goldfish meat to explore food possibilities for astronauts on long-range space missions. He contacted all 60 of the cited authors and teamed up with three to consider the viability of producing cultured meat on a large scale. He founded New Harvest June 23, 2004.

In late 2004, New Harvest was invited to present on cultured meat at the PROFETAS (PROtein Foods, Environment, Technology, and Society) conference in Wageningen, in the Netherlands. Following this, Jason met with the Dutch Agriculture Minister to advise on funding cultured meat research. 

On May 1, 2005, the Dutch cultured meat project began. It was a¬†‚ā¨2 million project that was to be subdivided¬†into 3 different areas: 1) stem cell biology, conducted at Utrecht University; 2) tissue engineering, conducted at Eindhoven Technical University; and 3) culture media, conducted at the University of Amsterdam.

In 2005, Pieter Edelman, Doug MacFarland, Vladimir Mironov, and Jason Matheny published ‚ÄúIn vitro cultured meat production‚ÄĚ in the journal¬†Tissue Engineering. It generated considerable public and scientific interest in cultured meat and in New Harvest. This was the first modern-day scientific publication on an idea that has been around for nearly a century.

In 2006, New Harvest began to provide funding from its donors to the Dutch cultured meat effort.

In 2007, New Harvest began collaborating with the Europe-based In Vitro Meat Consortium. Stig William Omholt of Norway played a key role in the development of the Consortium, whose mission was ‚Äúto promote scientific excellence and to coordinate and fund research contributing to the establishment of competitive alternatives to conventional meat production.‚ÄĚ On April 9, 2008, the Consortium put on the First International In-Vitro Meat Symposium, which took place at the Norwegian Food Research Institute in Norway. Unfortunately, the Consortium dissipated shortly after due to a lack of funding dedicated to cultured meat.

In August 2011, the European Science Foundation put on an exploratory workshop called ‚ÄúIn vitro meat: Possibilities and realities for an alternative future meat source‚ÄĚ in Gothenburg, Sweden, convened by Julie Gold and Stellan Welin. The main objectives of the workshop were to assess the state-of-the-art of the field and to identify major bottlenecks, and competences needed in order to overcome them. It was at this conference when the scientific community decided to use the term ‚Äúcultured meat‚ÄĚ as opposed to ‚Äúin vitro meat.‚ÄĚ

In September of 2012, New Harvest put on the seminar ‚ÄúTissue Engineered Nutrition‚ÄĚ at the¬†TERMIS (Tissue Engineering and Regenerative Medicine International Society) World Congress in Vienna, Austria.¬†

Meanwhile, in 2009, our current CEO, Isha, was studying cell and molecular biology at the University of Alberta. In her last year, she took a graduate level class on meat science, a departure from most of her coursework. In this class, Isha came to realize that re-thinking animal agriculture would be a very impactful way to ignite change. Her Professor, Dr. Mirko Betti, had read about cultured meat in a book called Futurizzazione by Carlo Pelanda in the early 2000s and attended the TERMIS meeting in Vienna. He shared the idea of growing meat in cell cultures rather than in livestock with Isha and the rest of the class.

Because Isha came from a biology background rather than an agriculture background, she was well prepared to investigate cultured meat from a biology perspective. Isha wrote her term paper on cultured meat, drawing from advances in medical research and applying them to making food. Isha sent the paper to Jason, who connected her to a community of scientists who encouraged her to publish her work. The paper, ‚ÄúPossibilities for an in-Vitro meat production system‚ÄĚ was published in Innovative Food Science and Emerging Technologies in 2010.

In 2012, Jason was searching for an Executive Director to take the reins at New Harvest full-time. Isha was hired and began her role at New Harvest on January 14, 2013. This new era of New Harvest has seen the organization start and incubate companies, fund groundbreaking research, and attract more talent and resources to this important emerging field.

People

Isha Datar

Executive Direcotr and President

Isha600.png

Isha has been pioneering the field of cellular agriculture since 2009, when she began a deep-dive investigation into the technical challenges and opportunities involved in producing cultured meat. In 2010 Isha published "Possibilities for an in-vitro meat production system" in the food science journal Innovative Food Science and Emerging Technologies.

She quickly discovered that cellular agriculture research was not held back by a lack of interest or expertise, but instead by a lack of designated funding channels directed at this intersectional work. Thus began her quest to establish the field of animal products made without animals, one recognized by researchers, funding agencies, and investors.

A stint in Policy and Public Affairs at GlaxoSmithKline illuminated the cooperative relationship between non-profits, academia, and companies in translating beneficial science out of the lab and into society. Isha has used a model established in the advancement of medical research to accelerate cellular agriculture, by funding early stage, foundational research in academia in order for ready-to-market technologies to be developed for commercial use.

Isha became Executive Director of New Harvest in January 2013. She co-founded Muufri, making milk without cows, in April 2014 and Clara Foods, making eggs without chickens, in November 2014.

Isha has a BSc. in Cell and Molecular Biology from the University of Alberta and a Masters in Biotechnology from the University of Toronto.

Isha enjoys rooftops, houseplants, long walks through the city, and the freedom of not owning a car.

 

Gilonne d'Origny

Chief Development Officer

Gilonne600.png

Gilonne has a BA from Brown in International Relations and Environmental Studies, an MA from SOAS in Geopolitics, an LLM from SOAS in International Environmental Law and International Criminal Law.

She published academic papers and news articles on climate change, decolonization (Western Sahara), and war crimes and she co-directed and co-produced Stealing Klimt, a documentary about the restitution of Nazi-stolen art (which inspired the feature film, The Lady In Gold).

She worked in finance.  At Citigroup she designed one of the first impact bonds (the Finance Facility for Mine Action). In private equity at Pegasus Capital Advisors, she helped raise a $1BN fund and invest in sustainable and efficient products.  In business, she created and ran IMG’s sustainability division (IMGreen) and helped start their IMG and Diplomacy consulting sub-division.  At On Demand Books, which disrupts the book supply chain, she helped deploy European and African operations. 

Gilonne's best asset and friend magnet is Sophie the dog.  After work, they're usually found hiking with friends in the mountains around San Francisco.  Gilonne also loves skiing in deep powder, everything about horses, and long hours spent in nature. 

Erin Kim

Communications Director

Erin600.png

Erin holds a BA in Women's and Gender Studies and Human Geography from the University of British Columbia, and a JD from the University of Alberta with a specialization in Environmental Law.

Erin started out at as a volunteer in 2014, balancing her studies with the handling of New Harvest's social media. An initial interest in animal law led Erin to the discovery of animal products made without animals, and she spent much of her time as a law student diving deep into the world of cellular agriculture. 

Following the completion of her law degree, she took on the role of Communications Director full-time, handling relations with media and making the science of cellular agriculture accessible to the public. Her prior experience includes an internship at Pivot Legal Society and many years working in special education at Eaton Arrowsmith School in Vancouver, Canada.

Erin loves having grown up in the Pacific Northwest, yoga, dance, quoting Seinfeld, and watching bad reality TV.

Daan Luining

Research Strategist

Daan600.png

Daan is a molecular biologist and tissue engineer with diverse, hands-on laboratory experience in DNA sequencing, mass spectrometry, chromatography, cell culture and tissue engineering.

Daan has a BSc. in Molecular Biology from the University of Applied Sciences Leiden, and a MSc. in Science-Based Business from the University of Leiden. Daan has worked for BaseClear group as a DNA sequencing technician; at Leiden University on using mass spectrometry for protein identification and tissue imaging, and at the University of Utrecht on cost-effective protein extraction techniques for mass spectrometry.

During his bachelor's degree, Daan discovered his passion for tissue engineering for the purposes of creating cultured meat. He began focusing his education towards cultured meat development, leading him to perform research at the Vrije Universiteit Amsterdam, on the vascularization of scaffolds. 

Most recently, Daan worked on the cultured meat project at Maastricht University in the lab of Professor Mark Post. His work was specifically focused on scaling technologies, developing a microcarrier bead system for satellite cell expansion. Daan joined New Harvest in the spring of 2016, where he is mobilizing the scientific community to advance the field of cellular agriculture through strategic, co-designed research projects.

Daan is passionate about science - especially biology, physics, and astronomy. His music style of choice is Italo Disco which he loves to dance to.

Board of Directors

Scott Banister

Scott built his career by identifying new markets and shaping innovative products for them. In 1995, he identified search engines as a significant advertising medium and invented the first products to automate marketing across multiple search engines, ultimately creating the bid-for-placement business model. As an initial investor and Director at PayPal, he was a co-inventor of the 'email payments' product now widely used on eBay. In 2000, Scott saw opportunity in the rapid growth of email traffic, co-founding IronPort Systems and serving as CTO. Scott is now a successful angel investor with past or present investments in Zappos, Ekso Bionics, Practice Fusion, ClassPass, Bell Biosystems, Bridge International Academies, Moon Express, Postmates, Thumbtack, and Uber.

Jason Matheny

Jason Matheny founded New Harvest in 2004. He became director of Intelligence Advanced Research Projects Activity (IARPA) in 2015, after serving as a program manager, associate office director, and office director. He previously worked for the Future of Humanity Institute at Oxford University, where his work focused on existential risks, the World Bank, the Center for Biosecurity, the Center for Global Development, the Applied Physics Laboratory, and on national security projects for the US government. He holds a PhD in Applied Economics from Johns Hopkins University, an MPH from Johns Hopkins, an MBA from Duke University, and a BA from the University of Chicago. He has published on biotechnology, neurotechnology, risk analysis, demography, economics, and bioethics.

Board of Advisors

Ryan Bethencourt

Biohacker

Ryan is a scientist, entrepreneur, and biohacker best known for his work as Program Director and Venture Partner at Indie.Bio, a biology accelerator and early stage seed fund. Bethencourt's also former head of life sciences at the XPRIZE foundation, a co-founder and CEO of Berkeley Biolabs, a biotech accelerator, and Halpin Neurosciences, an ALS therapeutics-focused biotech company. Bethencourt also co-founded Counter Culture Labs, a citizen science nonprofit, and Sudo Room, a hacker space based in downtown Oakland, California.

Marianne Ellis

Bioreactor designer

Dr Ellis studied for a BEng in Chemical & Bioprocess Engineering and a PhD in Biochemical Engineering at The University of Bath. After a year as a postdoctoral researcher she took up an academic position in 2005. She is an Associate Member of the IChemE, a committee member of the Biochemical Engineering Special Interest Group (BESIG). and a Deputy-Director of the Centre for Regenerative Medicine.

Dr Ellis's research aims to address the challenges of scale-up that are currently being faced in tissue engineering. The work is focused on upstream bioprocessing for tissue engineering, specifically designing and fabricating bioreactors for large-scale cell culture. She applies the chemical engineering principles of 'unit operations' and the relevant fluid dynamics, mass transfer and reaction kinetics to enable biological advances to be translated into a viable product for use in the clinic.

Andras Forgacs

Cellular agriculture entrepreneur

Andras is an entrepreneur and venture investor in technology and life science. He co-founded Modern Meadow in 2011. Previously, he had also co-founded Organovo, a leader in tissue engineering which pioneered the use of 3D bio-printing to create human tissue for a range of medical applications. Organovo’s bio-printer was named one of the top inventions of 2010 by Time Magazine and the company was recognized by MIT Technology Review on its TR50 list of most innovative companies for 2012.

Andras also served as Managing Director with Richmond Global, an international technology-focused venture fund. Previously, Andras was a consultant in the New York office of McKinsey & Company focused on biopharma and private equity. Earlier, he was a founding member of Citigroup’s corporate and investment banking e-commerce group where he led a team that developed award winning financial technology products and advised large cap corporate clients on a range of corporate finance challenges.

He is also co-founder and Chairman Emeritus of the international non-profit Resolution Project. Andras is a Kauffman Fellow with the Center for Venture Education and a Term Member with the Council on Foreign Relations. Andras holds an MBA from the Wharton School of Business and a Bachelor of Arts with honors from Harvard University.

Mark Post

Cellular agriculture pioneer

Professor Mark Post is a medical doctor who has had several appointments as assistant professor at Utrecht University, Harvard University, as associate professor at Dartmouth college, and as full professor at Eindhoven University of Technology and Maastricht University. He currently holds the chair of the Physiology Department at Maastricht University.

His main research interest is the engineering of tissues for medical applications and for food. The medical applications focus on the construction of blood vessels that can be used as grafts for coronary artery bypass grafting. Tissue engineering for food has lead to the development of cultured beef from bovine skeletal muscle stem cells in an effort to supplement and perhaps transform the traditional meat production through livestock. Dr Post co-authored 150 papers in leading peer-reviewed scientific journals and received during his career close to 30 million dollars in funding and awards from different sources including government, charity and industry. In August 2013, he presented the world’s first hamburger from cultured beef. 

Adam Sender

Philanthropist

Adam Sender is the founder and chief investment officer of Sender Company & Partners, a hedge fund specializing in market volatility. Previously, Mr. Sender managed Exis Capital Management from 1998 to 2014. Mr. Sender started the Sender Collection in 1998, and over time has evolved into a distinguished and well-known collection of contemporary art that has ranked amongst the top 100 art collections in the world. Mr. Sender has generously supported exhibitions and institutions around the world through financial contributions and the loan of artwork. He serves on the board of MOCA LA and has a number of significant relationships with museums and non-profit organizations. Mr. Sender received Bachelor of Arts in History from the University of Michigan in 1991. He is an active philanthropist in causes ranging from The National September 11 Memorial to The Clinton Foundation, The Woodstock Animal Sanctuary and PETA.

 

Amy Wolfcale

Brand Strategist

Amy Wolfcale is the CEO and Founder of two brand strategy consultancies, Falcon and Wolf and Thought Leadership Strategies.  She has led global branding, communications and marketing for some of the world's most iconic brands including Dow Jones, The Wall Street Journal, the MONEY Group at Time Inc., Consumer Reports, and The Markle Foundation.  She helps brands understand how to tell their stories effectively in a multi-channel world and how to build loyal, engaged communities in an era of infinite distraction. She specializes in traditional media relations, social media strategies, mobile and digital programs, marketing, advertising, and public affairs. Her brand strategies are credited with building global brands and increasing awareness and market share while driving revenue.  She also teaches social media strategy and strategic communications at the NYU School of Professional Studies.  She frequently advises clients on sustainability programs, corporate social responsibility initiatives, and strategic partnerships.  She holds a Masters in International Relations from the Johns Hopkins School of Advanced International Studies. 

Donors

Image_2016-08-26_at_6.22_PM.jpg

 

jc foundation logo